anatomy of ship

anatomy of ship is a comprehensive exploration into the various components and structures that make up a vessel. Understanding the anatomy of a ship is crucial for those involved in maritime industries, naval architecture, and marine engineering. This article delves into the fundamental parts of a ship, including the hull, deck, superstructure, and propulsion mechanisms, while also discussing their functions and significance. Additionally, we will explore different classifications of ships and how their anatomy varies according to their purpose. The knowledge of ship anatomy not only enhances safety protocols but also improves operational efficiency. Below is a structured overview of the topics we will cover in detail.

Introduction to Ship Anatomy

• The Hull: Structure and Function

• The Deck: Layout and Importance

• The Superstructure: Components and Roles

Propulsion Systems: Types and Mechanisms

Classification of Ships: Varieties and Purpose

Conclusion

Introduction to Ship Anatomy

The anatomy of a ship encompasses the various structural components that contribute to its functionality and performance at sea. Each part plays a critical role in ensuring the safety, efficiency, and stability of the vessel. A comprehensive understanding of ship anatomy is vital for shipbuilders, engineers, and mariners alike. This section provides a brief overview of the essential components of a ship, including the hull, deck, superstructure, and propulsion systems. By grasping these concepts, one can appreciate the complexities involved in ship design and operation.

The Hull: Structure and Function

The hull is the primary body of the ship and serves as its foundation. It is designed to provide buoyancy and structural integrity while navigating through water. The hull's shape and materials significantly influence the ship's performance, stability, and seaworthiness.

Types of Hulls

Hull designs can vary greatly depending on the type of ship and its intended use. The most common types of hulls include:

- **Displacement Hulls:** These hulls push water aside as they move and are typically found in larger vessels. They provide stability and are efficient at high speeds.
- **Planing Hulls:** These hulls rise above the water's surface at high speeds and are commonly used in smaller boats and racing vessels.
- **Catamaran Hulls:** Featuring two parallel hulls, catamarans provide increased stability and space, making them popular in recreational and commercial applications.

Each hull type has distinct advantages and is chosen based on the specific operational requirements of the ship.

Materials Used in Hull Construction

The materials used for hull construction are critical in determining the ship's durability and weight. Common materials include:

- **Steel:** Widely used for commercial vessels due to its strength and resilience.
- **Aluminum:** Lighter than steel, aluminum is often used in smaller vessels and highspeed crafts due to its corrosion resistance.
- FRP (Fiberglass Reinforced Plastic): Common in recreational boats, FRP is lightweight and offers good resistance to corrosion.

Selecting the appropriate material significantly impacts the ship's performance, maintenance needs, and overall lifespan.

The Deck: Layout and Importance

The deck is the horizontal surface on a ship where various activities occur, from crew operations to the movement of cargo. It is a crucial part of the anatomy of a ship, influencing its operational efficiency and safety.

Types of Decks

Ships can have multiple decks, each serving different functions. The main types of decks include:

• Main Deck: The primary surface of the ship, often where cargo is loaded and

unloaded.

- **Upper Deck:** Found above the main deck, this area is often used for recreational activities or additional storage.
- Lower Deck: Located below the main deck, it typically houses cabins, machinery, and storage spaces.

The layout of the deck is meticulously planned to ensure efficient workflow and safety for crew members and cargo.

Deck Equipment

Various equipment is installed on the deck to facilitate different operations. Key deck equipment includes:

- Winches: Used for hauling heavy loads, especially in loading and unloading cargo.
- Crane Systems: Essential for lifting heavy containers and cargo units.
- Life Rafts: Safety equipment crucial for emergencies.

Understanding deck equipment is vital for ensuring effective ship operations and enhancing safety protocols.

The Superstructure: Components and Roles

The superstructure refers to the parts of the ship that are built above the main deck and includes the bridge, accommodation areas, and various operational facilities. This section is essential for navigation, crew comfort, and overall ship functionality.

Bridge and Navigation Equipment

The bridge is the command center of the ship, where navigation and operations are conducted. Key components include:

- Radar Systems: Used for detecting other vessels and obstacles.
- **GPS Navigation:** Provides precise positioning and route planning.
- **Communication Systems:** Essential for maintaining contact with other ships and shore stations.

The superstructure's design directly affects the crew's ability to operate the ship safely and

Accommodation Areas

Accommodation areas are designed to provide comfort for the crew during long voyages. These areas typically include:

- Cabins: Individual or shared sleeping quarters for crew members.
- Mess Rooms: Dining areas where the crew can gather for meals.
- Recreational Spaces: Areas designated for leisure and relaxation.

Properly designed accommodation areas contribute to crew morale and overall operational efficiency.

Propulsion Systems: Types and Mechanisms

The propulsion system is a vital component of the ship's anatomy, enabling it to move through the water. Various types of propulsion systems are utilized based on the ship's design and purpose.

Types of Propulsion Systems

Common propulsion systems include:

- **Diesel Engines:** Most widely used in merchant vessels for their efficiency and reliability.
- Gas Turbines: Often used in fast naval ships due to their high power output.
- **Electric Propulsion:** Increasingly popular for its efficiency and reduced emissions, especially in hybrid vessels.

The choice of propulsion system impacts fuel efficiency, speed, and environmental compliance.

Propeller and Steering Mechanisms

The ship's propeller and steering mechanisms are essential for maneuverability. Key components include:

• **Propellers:** Convert engine power into thrust, allowing the ship to move.

- Rudders: Control the ship's direction and enable turning.
- Bow Thrusters: Assist in maneuvering, especially in tight spaces.

Understanding these components is crucial for safe navigation and operational efficiency.

Classification of Ships: Varieties and Purpose

Ships are classified based on their design, purpose, and the type of cargo they carry. Understanding these classifications is essential for maritime professionals.

Major Categories of Ships

The major categories of ships include:

- Cargo Ships: Designed primarily for transporting goods.
- Tankers: Used for transporting liquid cargo, such as oil and chemicals.
- Passenger Ships: Designed to carry passengers, including cruise ships and ferries.
- Naval Ships: Built for military purposes, including destroyers and submarines.

Each category has distinct design features tailored to its operational requirements.

Specialized Vessels

In addition to general classifications, specialized vessels serve unique functions, such as:

- Research Vessels: Equipped for scientific research and exploration.
- **Icebreakers:** Designed to navigate through ice-covered waters.
- Service Vessels: Used for offshore support and maintenance operations.

These specialized vessels showcase the diversity and adaptability of ship designs to meet various maritime challenges.

Conclusion

Understanding the anatomy of a ship is paramount for anyone involved in the maritime industry. From the hull to the superstructure and propulsion systems, each component

plays a vital role in the vessel's performance, safety, and efficiency. As technology evolves, so does ship design, leading to innovations that enhance operational capabilities and environmental sustainability. A thorough knowledge of ship anatomy not only benefits maritime professionals but also contributes to safer and more efficient shipping practices globally.

Q: What are the main components of a ship?

A: The main components of a ship include the hull, deck, superstructure, propulsion system, and various equipment and machinery. Each part serves a distinct function, contributing to the vessel's overall performance and safety.

Q: How does the hull design affect a ship's performance?

A: Hull design significantly affects a ship's performance by influencing its stability, speed, and fuel efficiency. Different hull shapes are optimized for various sea conditions and operational requirements.

Q: What types of propulsion systems are commonly used in ships?

A: Common propulsion systems used in ships include diesel engines, gas turbines, and electric propulsion systems. Each type has its advantages and is chosen based on the vessel's design and intended use.

Q: What is the purpose of the superstructure on a ship?

A: The superstructure houses essential components such as the bridge for navigation, accommodation areas for crew comfort, and various operational facilities. It plays a crucial role in the ship's functionality.

Q: How are ships classified based on their use?

A: Ships are classified based on their use into categories such as cargo ships, tankers, passenger ships, and naval ships. Each category is designed with specific features to meet its operational needs.

Q: Why is understanding ship anatomy important for maritime professionals?

A: Understanding ship anatomy is important for maritime professionals because it enhances

safety protocols, improves operational efficiency, and aids in effective maintenance and navigation.

Q: What materials are commonly used in ship construction?

A: Common materials used in ship construction include steel, aluminum, and fiberglass reinforced plastic (FRP). The choice of material affects the ship's durability, weight, and maintenance requirements.

Q: What role does the deck play on a ship?

A: The deck serves as a working area where cargo is loaded and unloaded, and various operations are conducted. Its design is crucial for ensuring efficient workflow and safety on board.

Q: What is the function of a ship's propeller?

A: The function of a ship's propeller is to convert the engine's power into thrust, enabling the vessel to move through the water. The design and size of the propeller impact the ship's speed and maneuverability.

Q: What are specialized vessels and their purposes?

A: Specialized vessels are designed for unique functions, such as research, icebreaking, or offshore support. These vessels have specific features tailored to meet the challenges of their operational environments.

Anatomy Of Ship

Find other PDF articles:

 $\underline{https://ns2.kelisto.es/algebra-suggest-006/Book?ID=KFP36-2703\&title=intermediate-algebra-5th-edition-miller-pdf-free.pdf}$

anatomy of ship: Principles of Tourism Part I' 2006 Ed. Z. Cruz, 2006 anatomy of ship: The Battleship Bismarck Jack Brower, 2005 Bismarck is arguably the most famous warship in the world. At 45,000 tonnes she and her sister ship Tirpitz were the largest and heaviest warships ever completed by any European nation. This volume features: a full description of one of the most famous warships of all time; a pictorial section showing full-view and on-board photographs; a colour guide and action painting on the jacket; more than 250 perspectives and

3-view drawings, with descriptive keys, of every detail of the ship - including general arrangements, hull structure, rigging, armament, fittings, aircraft and ship's boats; and one large-scale plan on the reverse of the fold-out jacket. It also includes a complete anatomy of the type in words, photographs and drawings.

anatomy of ship: Anatomy of the Ship Series,

anatomy of ship: The 100-gun Ship, Victory John McKay, 1987

anatomy of ship: The Anatomy of Nelson's Ships Charles Nepean Longridge, 1955

anatomy of ship: The Battleship Dreadnought John Roberts, 2001 Launched in 1906, HMS Dreadnought was the first all big-gun battleship and, as such, revolutionized battleship design for more than a generation. Though she saw little action during her career, her influence was profound.

anatomy of ship: Ship Shapes, 2018-10-12 Excerpt from Ship Shapes: Anatomy and Types of Naval Vessels While the objective of all seagoing personnel should be to recognize important ships or types at a glance, familiarity with the details of naval design illustrated in the following pages may prove of value to the student of ship identification. Determination of a ship's type must constitute a primary step in identification in combat areas. Since accurate estimation of a ship's size is extremely difficult at sea, an observer may have occasion to resort to certain rules of thumb to differentiate various types of fighting ships. A discussion of the factors that may be employed to distinguish these types, and of the common variants that occur within the types themselves, will be found in this section of O. N. I. 223. About the Publisher Forgotten Books publishes hundreds of thousands of rare and classic books. Find more at www.forgottenbooks.com This book is a reproduction of an important historical work. Forgotten Books uses state-of-the-art technology to digitally reconstruct the work, preserving the original format whilst repairing imperfections present in the aged copy. In rare cases, an imperfection in the original, such as a blemish or missing page, may be replicated in our edition. We do, however, repair the vast majority of imperfections successfully; any imperfections that remain are intentionally left to preserve the state of such historical works.

anatomy of ship: The Ship's Medicine Chest and First Aid at Sea United States. Public Health Service, 1929

anatomy of ship: The Lancet, 1894

anatomy of ship: Sailing Ships from Plastic Kits Kerry Jang, 2024-10-30 Models of sailing ships, with their towering masts and billowing sails, have always held a special fascination for model makers because they capture all the romance of the sea, shipboard life, and a fighting spirit. However, many would-be modelers are discouraged by the inherent complexity of the subject especially the masts and rigging, as well as the often-sumptuous decoration. Plastic kit manufacturers were quick to capitalize on this interest and produced kits that were advertised as easy and reasonably guick to assemble, featuring ready-made detail that is easily tackled by modelers of varying skills and ages with the promise of a good result. Plastic sailing ship kits are affordable, especially in comparison to wooden ship kits, and building a fleet of the most famous ships in history is easily achieved. Despite their ease of assembly, plastic models of sailing ships, like the ships themselves, remain complicated to build. Manufacturers devised several simplifications of the most difficult aspects, such as molding the lower, upper, and topmasts in one piece, offering preformed molded plastic shrouds and ratlines, or sails in vacuum-formed plastic. However, modelers have long complained that these simplifications, the physical limitations of injected plastic moldings, and the very medium of styrene plastic itself have resulted in often crudely detailed and unrealistic finished models. This book is the remedy. It describes and demonstrates techniques unique to plastic sailing ship models that overcome these limitations, allowing the construction of authentic and personally satisfying models. Each modeler has a different expectation for their model. Some will want a simple build with some straightforward refinements, whereas others will want a more detailed build that takes advantage of the many new aftermarket items, and there are those who seek the most accurate and detailed replica possible. Sailing Ships from Plastic Kits aims to give every modeler - regardless of skill and experience - a range of fundamental and advanced

techniques to choose from when transforming a plastic kit into an authentic sailing ship model. Heavily illustrated in color throughout, this book is an ideal addition to the purchase of any plastic ship kit.

anatomy of ship: Cargo Ship Logistics Oliver Scott, AI, 2025-03-12 Cargo Ship Logistics unveils the complex world of container ships and their vital role in global trade, offering insights relevant to both business professionals and those intrigued by the mechanics of international commerce. The book explores the evolution of containerization and the operational dynamics of modern cargo ships, highlighting their significant economic impact. For instance, the standardization of cargo handling has drastically improved efficiency, turning weeks-long processes into days. The book details how cargo ship logistics underpins the modern global economy, emphasizing that without these vessels and intricate networks, international trade would be fundamentally different. The approach begins with core concepts like containerization and port operations, progressing through route optimization, fleet management, and the impact of environmental regulations. Readers will gain a comprehensive understanding of how maritime transport shapes our interconnected world. The book's value lies in its comprehensive yet accessible overview of this critical field, suitable for students, professionals, and general readers alike. It presents practical applications and implications through case studies and analyses of current industry trends, addressing key debates such as the environmental impact of cargo ships and potential solutions for reducing emissions.

anatomy of ship: The Battleship Yamato Yoshida Mitsuru, 1988-12-27 This richly detailed tribute to the legendary Yamato is now back in print by popular demand. Equipped with the largest guns and heaviest armor and having the greatest displacement of any ship ever built, the Yamato proved to be a formidable opponent to the U.S. Pacific Fleet in World War II. This classic in the Anatomy of the Ship series contains a full description of the design and construction of the battleship including wartime modifications, and a career history. This is followed by a substantial pictorial section with rare onboard views of Yamato and her sister ship, a comprehensive portfolio of more than 600 perspective and three-view drawings, and 30 photographs. Such a handsome and thorough work is guaranteed to impress modelmakers, ship enthusiasts, and naval historians.

anatomy of ship: Tudor Warship Mary Rose Douglas McElvogue, 2020-02-20 The great warship the Mary Rose was built between 1509 and 1511 and served 34 years in Henry VIII's navy before catastrophically sinking in the Battle of the Solent on 19 July 1545. A fighting platform and sailing ship, she was the pride of the Tudor fleet. Yet her memory passed into undeserved oblivion - until the remains of this magnificent flagship were dramatically raised to the surface in 1982 after 437 years at the bottom of the Solent. Part of the bestselling Conway Anatomy of The Ship series, Tudor Warship Mary Rose provides the finest possible graphical representation of the Mary Rose. Illustrated with a complete set of scale drawings, this book contains technical plans as well as explanatory views, all with fully descriptive keys. Douglas McElvoque uses archaeological techniques to trace the development and eventful career of Henry VIII's gunship, while placing it in the context of longer-term advances in ship construction. This volume features: -The first full archaeological reconstruction of the Mary Rose, as she would have appeared when built and when she sank. -The concepts behind the building of the ship, along with consideration of the materials used and her fitting-out and manning. -The ship's ordnance, including muzzle loaders, breech loaders, firearms, bows, staff weapons, bladed weapons and fire pots. -Analysis of the contemporary descriptions of the Mary Rose's sailing characteristics and ship handling, whether general sailing, heavy weather sailing, anchoring, mooring, stemming the tide or riding out storms. -A service history of the Mary Rose examining the campaigns of the vessel: the battles she was involved in, when she held station in the Channel and the periods in which she was laid up.

anatomy of ship: Skilled Sailors on the High Seas: A Seafarer's Journey Pasquale De Marco, 2025-07-23 Set sail on an extraordinary journey across the vast oceans with Skilled Sailors on the High Seas: A Seafarer's Journey. This comprehensive guide encompasses the history, traditions, challenges, and advancements of seafaring, offering a wealth of knowledge for aspiring mariners, seasoned sailors, and anyone captivated by the allure of the open sea. Within these pages,

you'll embark on a voyage of discovery, exploring the daily lives of those who venture out onto the high seas. Learn about the intricate hierarchy and roles aboard a ship, the challenges of navigating treacherous waters, and the camaraderie that binds seafarers together. Through firsthand accounts and expert insights, gain a deep appreciation for the resilience, adaptability, and self-reliance required to thrive in this demanding environment. Skilled Sailors on the High Seas not only delves into the practical aspects of seafaring but also explores its profound cultural and historical significance. Trace the evolution of seafaring from ancient times to the present day, uncovering the remarkable contributions of renowned sailors and the impact of maritime exploration on the shaping of civilizations. From the Vikings to the Age of Discovery and beyond, this book weaves together a rich narrative that celebrates the human spirit of adventure and discovery. In addition to its historical and cultural exploration, Skilled Sailors on the High Seas sheds light on the technological advancements that have transformed seafaring over the centuries. Learn about the innovations in ship design, navigation, and communication that have made it possible to venture further and safer into the vast expanse of the oceans. From the invention of the compass to the advent of steam power and modern machinery, trace the evolution of maritime technology and its profound impact on the industry. Furthermore, Skilled Sailors on the High Seas emphasizes the critical role of seafaring in the modern world. Gain insights into the global trade and commerce that rely on maritime transportation, the importance of maritime security and safety, and the urgent need for sustainable practices to protect the health of our oceans. Through thought-provoking discussions and case studies, this book challenges readers to consider the environmental impact of seafaring and the shared responsibility to preserve the delicate balance of marine ecosystems. As you delve into Skilled Sailors on the High Seas, you'll not only acquire a wealth of knowledge about seafaring but also develop a deep appreciation for the spirit of those who have dedicated their lives to the sea. The stories of courage, determination, and camaraderie will inspire you, while the breathtaking descriptions of life on the open ocean will ignite your sense of wonder and adventure. Whether you're reading for pleasure, seeking practical guidance, or simply yearning to reconnect with the timeless allure of the sea, this book is an invaluable companion. If you like this book, write a review!

anatomy of ship: Maritime Stories: Unveiling the World's Pivotal Voyages Pasquale De Marco, 2025-07-19 Embark on an epic voyage through maritime history, where tales of adventure, discovery, and transformation unfold on the vast canvas of the world's oceans. From ancient seafaring civilizations to modern shipping routes, this comprehensive exploration delves into the pivotal voyages that shaped our world. Uncover the stories of ships, sailors, and the diverse cultures they encountered, witnessing the rise and fall of maritime empires and the clash of navies in epic sea battles. Trace the flow of goods, ideas, and influences along maritime trade routes, and learn about the technologies that revolutionized sea travel, from the invention of the compass to the advent of steam power. Confront the darker aspects of maritime history, including shipwrecks, disasters, and the challenges facing the modern maritime industry. Examine the impact of climate change and pollution on marine life and ecosystems, and explore the efforts being made to protect and preserve our oceans. Discover the profound connection between humanity and the sea, as maritime history reveals our resilience, ingenuity, and adventurous spirit. This book is a testament to our shared heritage, our interconnectedness, and our enduring fascination with the vast and mysterious realm of the sea. With captivating storytelling and vivid historical accounts, this book transports readers to the heart of maritime history, offering a deeper understanding of our world and our place within it. It is an essential read for anyone interested in exploration, history, and the enduring allure of the sea. If you like this book, write a review!

anatomy of ship: <u>Hospitality & Tourism</u> Robert A. Brymer, 2007 CD-ROM contains files that correspond to each chapter of the book. These files include keywords with definitions, related websites, review guestions and slides that highlight the key points.

anatomy of ship: Transactions Royal Institution of Naval Architects, 1921

anatomy of ship: Anatomy of the Ship , 2014

anatomy of ship: Association Medical Journal, 1917

Related to anatomy of ship

Human Anatomy Explorer | Detailed 3D anatomical illustrations There are 12 major anatomy systems: Skeletal, Muscular, Cardiovascular, Digestive, Endocrine, Nervous, Respiratory, Immune/Lymphatic, Urinary, Female Reproductive, Male Reproductive,

Human body | Organs, Systems, Structure, Diagram, & Facts human body, the physical substance of the human organism, composed of living cells and extracellular materials and organized into tissues, organs, and systems. Human

TeachMeAnatomy - Learn Anatomy Online - Question Bank Explore our extensive library of guides, diagrams, and interactive tools, and see why millions rely on us to support their journey in anatomy. Join a global community of learners and

Human anatomy - Wikipedia Human anatomy can be taught regionally or systemically; [1] that is, respectively, studying anatomy by bodily regions such as the head and chest, or studying by specific systems, such

Human body systems: Overview, anatomy, functions | Kenhub This article discusses the anatomy of the human body systems. Learn everything about all human systems of organs and their functions now at Kenhub!

Open 3D Model | **AnatomyTOOL** Open Source and Free 3D Model of Human Anatomy. Created by Anatomists at renowned Universities. Non-commercial, University based. To learn, use and build on **Anatomy - MedlinePlus** Anatomy is the science that studies the structure of the body. On this page, you'll find links to descriptions and pictures of the human body's parts and organ systems from head

Human Anatomy Explorer | Detailed 3D anatomical illustrations There are 12 major anatomy systems: Skeletal, Muscular, Cardiovascular, Digestive, Endocrine, Nervous, Respiratory, Immune/Lymphatic, Urinary, Female Reproductive, Male Reproductive,

Human body | Organs, Systems, Structure, Diagram, & Facts human body, the physical substance of the human organism, composed of living cells and extracellular materials and organized into tissues, organs, and systems. Human

TeachMeAnatomy - Learn Anatomy Online - Question Bank Explore our extensive library of guides, diagrams, and interactive tools, and see why millions rely on us to support their journey in anatomy. Join a global community of learners and

Human anatomy - Wikipedia Human anatomy can be taught regionally or systemically; [1] that is, respectively, studying anatomy by bodily regions such as the head and chest, or studying by specific systems, such

Human body systems: Overview, anatomy, functions | Kenhub This article discusses the anatomy of the human body systems. Learn everything about all human systems of organs and their functions now at Kenhub!

Open 3D Model | **AnatomyTOOL** Open Source and Free 3D Model of Human Anatomy. Created by Anatomists at renowned Universities. Non-commercial, University based. To learn, use and build on **Anatomy - MedlinePlus** Anatomy is the science that studies the structure of the body. On this page, you'll find links to descriptions and pictures of the human body's parts and organ systems from head

Human Anatomy Explorer | Detailed 3D anatomical illustrations There are 12 major anatomy systems: Skeletal, Muscular, Cardiovascular, Digestive, Endocrine, Nervous, Respiratory, Immune/Lymphatic, Urinary, Female Reproductive, Male Reproductive,

Human body | Organs, Systems, Structure, Diagram, & Facts human body, the physical substance of the human organism, composed of living cells and extracellular materials and organized into tissues, organs, and systems. Human

TeachMeAnatomy - Learn Anatomy Online - Question Bank Explore our extensive library of guides, diagrams, and interactive tools, and see why millions rely on us to support their journey in

anatomy. Join a global community of learners and

Human anatomy - Wikipedia Human anatomy can be taught regionally or systemically; [1] that is, respectively, studying anatomy by bodily regions such as the head and chest, or studying by specific systems, such

Human body systems: Overview, anatomy, functions | Kenhub This article discusses the anatomy of the human body systems. Learn everything about all human systems of organs and their functions now at Kenhub!

Open 3D Model | **AnatomyTOOL** Open Source and Free 3D Model of Human Anatomy. Created by Anatomists at renowned Universities. Non-commercial, University based. To learn, use and build on **Anatomy - MedlinePlus** Anatomy is the science that studies the structure of the body. On this page, you'll find links to descriptions and pictures of the human body's parts and organ systems from head

Related to anatomy of ship

Eric Dane's 5-Season Apocalyptic Thriller Was a Must-See Sleeper Hit Series Before 'The Last of Us' (1don MSN) For most fans, Eric Dane will always be McSteamy from Grey's Anatomy. But following that role, he spent five seasons

Eric Dane's 5-Season Apocalyptic Thriller Was a Must-See Sleeper Hit Series Before 'The Last of Us' (1don MSN) For most fans, Eric Dane will always be McSteamy from Grey's Anatomy. But following that role, he spent five seasons

Back to Home: https://ns2.kelisto.es