what is a trivial solution in linear algebra

what is a trivial solution in linear algebra is a fundamental concept that plays a crucial role in understanding systems of linear equations and vector spaces. In linear algebra, a trivial solution typically refers to the simplest solution to a homogeneous system of equations, where all variables equal zero. This article will delve into the definition of a trivial solution, its significance, and its applications in various mathematical contexts. We will also explore examples to illustrate these concepts clearly, as well as related concepts such as non-trivial solutions and the implications of these solutions in linear transformations.

This comprehensive analysis will help you grasp the importance of trivial solutions in linear algebra. We will also provide a detailed FAQ section to answer common questions about this topic, ensuring you have a thorough understanding by the end of the article.

- Understanding Trivial Solutions
- Homogeneous Systems of Equations
- Examples of Trivial Solutions
- Non-Trivial Solutions
- Applications of Trivial Solutions
- Conclusion

Understanding Trivial Solutions

A trivial solution in linear algebra refers to the solution of a homogeneous equation where all the variables are equal to zero. In mathematical terms, if we consider a linear system represented as Ax = 0, where A is a matrix and x is a vector, the trivial solution is the vector x = [0, 0, ..., 0]. This solution is termed 'trivial' because it does not provide any new information about the system; it is the most basic solution possible.

Trivial solutions are essential in understanding the structure of linear equations. They serve as a baseline from which other, more complex solutions (non-trivial solutions) can be derived. In many cases, the existence of a trivial solution indicates that the system of equations is homogeneous, which leads to different analytical approaches in solving linear systems.

Homogeneous Systems of Equations

A homogeneous system of linear equations is one in which all of the constant terms are zero. Such systems can be written in the form Ax = 0, where A is a coefficient matrix, and x is the vector of variables. An important property of these systems is that they always contain at least one solution — the trivial solution.

The general form of a homogeneous system can be represented as follows:

- Equation 1: $a_{11}x_1 + a_{12}x_2 + ... + a_{1}nx_n = 0$
- Equation 2: $a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n = 0$
- ...
- Equation m: $am_1x_1 + am_2x_2 + ... + am_nx_n = 0$

In this context, the solution set can either contain only the trivial solution or include additional non-trivial solutions, depending on the relationship between the number of equations and the number of variables. The rank of the matrix A plays a crucial role in determining the nature of the solutions.

Examples of Trivial Solutions

To illustrate the concept of trivial solutions, consider the following example involving a simple 2x2 homogeneous system:

Let A = [[1, 2], [3, 4]] and $x = [x_1, x_2]$. The homogeneous system can be expressed as:

- $1x_1 + 2x_2 = 0$
- $3x_1 + 4x_2 = 0$

In this case, the trivial solution is $x_1 = 0$ and $x_2 = 0$. However, this system may also have non-trivial solutions if the determinant of A is zero, indicating that the system is underdetermined.

Another example can be taken from a 3x3 system:

Consider the system represented by the matrix A:

- $1x_1 + 0x_2 + 1x_3 = 0$
- $\bullet 0x_1 + 1x_2 + 1x_3 = 0$

This system also has a trivial solution x = [0, 0, 0], but exploring the relationships between the variables can yield a set of non-trivial solutions as well.

Non-Trivial Solutions

While the trivial solution provides a foundational understanding of linear equations, non-trivial solutions are equally important. A non-trivial solution occurs when at least one of the variables in the solution set is not equal to zero. The existence of non-trivial solutions is contingent upon the properties of the coefficient matrix A, specifically its rank.

If the rank of A is less than the number of variables, the homogeneous system will have non-trivial solutions. This is because the system is underdetermined, allowing for infinite solutions. Conversely, if the rank equals the number of variables, the only solution is the trivial solution.

Applications of Trivial Solutions

Trivial solutions have several applications across different fields, particularly in engineering, physics, and computer science. Understanding trivial and non-trivial solutions is crucial for:

- Analyzing stability in systems of differential equations
- Solving problems in control theory
- Application in computer graphics through transformations
- Studying linear transformations and vector spaces

In control theory, for instance, trivial solutions can indicate equilibrium points of dynamic systems, while in computer graphics, they help in understanding how objects move and change under various transformations.

Conclusion

In summary, understanding what is a trivial solution in linear algebra is fundamental for grasping the broader concepts of linear systems and their properties. A trivial solution represents the simplest case in homogeneous equations, providing a basis for further exploration of non-trivial solutions. By analyzing the nature of solutions based on the coefficient matrix's rank, one can derive significant insights applicable in various scientific

and engineering domains. The interplay between trivial and non-trivial solutions forms the bedrock of linear algebraic theory and practice.

Q: What is a trivial solution in the context of linear algebra?

A: A trivial solution in linear algebra refers to the simplest possible solution to a homogeneous system of linear equations, where all variables are equal to zero (e.g., x = [0, 0, ..., 0]).

Q: How do trivial solutions relate to homogeneous systems?

A: Trivial solutions always exist in homogeneous systems of linear equations, which are defined by the equation Ax = 0. These systems can have additional non-trivial solutions depending on the rank of the coefficient matrix.

Q: Can a system have only a trivial solution?

A: Yes, a system can have only a trivial solution if the rank of the coefficient matrix equals the number of variables in the system. This indicates that the equations are independent and do not allow for any other solutions.

Q: What is the significance of non-trivial solutions?

A: Non-trivial solutions are significant because they represent cases where at least one variable is not zero, indicating a more complex relationship between the variables. Their existence points to an underdetermined system where multiple solutions can exist.

Q: How can I determine if a trivial or non-trivial solution exists?

A: To determine the existence of trivial or non-trivial solutions, analyze the rank of the coefficient matrix against the number of variables. If the rank is less than the number of variables, non-trivial solutions exist; otherwise, only the trivial solution is available.

Q: Where are trivial solutions applied in real-world scenarios?

A: Trivial solutions have applications in various fields such as control theory, computer graphics, and engineering, where they help analyze stability, transformations, and system

behaviors.

Q: Are trivial solutions unique?

A: Yes, the trivial solution is unique in the sense that it always corresponds to the zero vector in homogeneous systems. However, non-trivial solutions can vary widely depending on the system's parameters.

Q: How do trivial solutions affect the study of linear transformations?

A: Trivial solutions play a crucial role in understanding linear transformations, particularly in determining the kernel of the transformation, which is the set of all vectors that map to the trivial solution in the codomain.

Q: What is the role of trivial solutions in vector spaces?

A: In vector spaces, the trivial solution helps establish the basis for vector spaces and linear combinations. It indicates the presence of the zero vector, which is essential for defining vector space properties.

What Is A Trivial Solution In Linear Algebra

Find other PDF articles:

 $\underline{https://ns2.kelisto.es/gacor1-02/pdf?trackid=EYf36-1104\&title=african-religion-and-philosophy-by-john-mbiti.pdf}$

what is a trivial solution in linear algebra: Introduction to Numerical Analysis Using MATLAB® Butt, 2009-02-17 Numerical analysis is the branch of mathematics concerned with the theoretical foundations of numerical algorithms for the solution of problems arising in scientific applications. Designed for both courses in numerical analysis and as a reference for practicing engineers and scientists, this book presents the theoretical concepts of numerical analysis and the practical justification of these methods are presented through computer examples with the latest version of MATLAB. The book addresses a variety of questions ranging from the approximation of functions and integrals to the approximate solution of algebraic, transcendental, differential and integral equations, with particular emphasis on the stability, accuracy, efficiency and reliability of numerical algorithms. The CD-ROM which accompanies the book includes source code, a numerical toolbox, executables, and simulations.

what is a trivial solution in linear algebra: <u>Advanced Mechanics of Solids</u> K.B.M Nambudiripad, 2017-12-04 ADVANCED MECHANICS OF SOLIDS: A Gentle Introduction is meant for the students who seem to have much difficulty with this subject. It tries to present the crucial

concepts gently and painlessly in the early chapters, but without sacrificing rigour. Copious footnotes and a large chapter of more than sixty illustrative examples are a feature of the book. These illustrative examples do not include all numerical problems.

what is a trivial solution in linear algebra: Engineering Mechanics of Deformable Solids Sanjay Govindjee, 2012-10-25 This book covers the essential elements of engineering mechanics of deformable bodies, including mechanical elements in tension-compression, torsion, and bending. It emphasizes a fundamental bottom up approach to the subject in a concise and uncluttered presentation. Of special interest are chapters dealing with potential energy as well as principle of virtual work methods for both exact and approximate solutions. The book places an emphasis on the underlying assumptions of the theories in order to encourage the reader to think more deeply about the subject matter. The book should be of special interest to undergraduate students looking for a streamlined presentation as well as those returning to the subject for a second time.

what is a trivial solution in linear algebra: Course In Analysis, A - Vol. Iv: Fourier Analysis, Ordinary Differential Equations, Calculus Of Variations Niels Jacob, Kristian P Evans, 2018-07-19 In the part on Fourier analysis, we discuss pointwise convergence results, summability methods and, of course, convergence in the quadratic mean of Fourier series. More advanced topics include a first discussion of Hardy spaces. We also spend some time handling general orthogonal series expansions, in particular, related to orthogonal polynomials. Then we switch to the Fourier integral, i.e. the Fourier transform in Schwartz space, as well as in some Lebesgue spaces or of measures. Our treatment of ordinary differential equations starts with a discussion of some classical methods to obtain explicit integrals, followed by the existence theorems of Picard-Lindelöf and Peano which are proved by fixed point arguments. Linear systems are treated in great detail and we start a first discussion on boundary value problems. In particular, we look at Sturm-Liouville problems and orthogonal expansions. We also handle the hypergeometric differential equations (using complex methods) and their relations to special functions in mathematical physics. Some qualitative aspects are treated too, e.g. stability results (Ljapunov functions), phase diagrams, or flows. Our introduction to the calculus of variations includes a discussion of the Euler-Lagrange equations, the Legendre theory of necessary and sufficient conditions, and aspects of the Hamilton-Jacobi theory. Related first order partial differential equations are treated in more detail. The text serves as a companion to lecture courses, and it is also suitable for self-study. The text is complemented by ca. 260 problems with detailed solutions.

what is a trivial solution in linear algebra: Introduction to Differential Equations with Dynamical Systems Stephen L. Campbell, Richard Haberman, 2011-10-14 Many textbooks on differential equations are written to be interesting to the teacher rather than the student. Introduction to Differential Equations with Dynamical Systems is directed toward students. This concise and up-to-date textbook addresses the challenges that undergraduate mathematics, engineering, and science students experience during a first course on differential equations. And, while covering all the standard parts of the subject, the book emphasizes linear constant coefficient equations and applications, including the topics essential to engineering students. Stephen Campbell and Richard Haberman--using carefully worded derivations, elementary explanations, and examples, exercises, and figures rather than theorems and proofs--have written a book that makes learning and teaching differential equations easier and more relevant. The book also presents elementary dynamical systems in a unique and flexible way that is suitable for all courses, regardless of length.

what is a trivial solution in linear algebra: Introduction to Projective Geometry C. R. Wylie, 2011-09-12 This lucid introductory text offers both an analytic and an axiomatic approach to plane projective geometry. The analytic treatment builds and expands upon students' familiarity with elementary plane analytic geometry and provides a well-motivated approach to projective geometry. Subsequent chapters explore Euclidean and non-Euclidean geometry as specializations of the projective plane, revealing the existence of an infinite number of geometries, each Euclidean in nature but characterized by a different set of distance- and angle-measurement formulas. Outstanding pedagogical features include worked-through examples, introductions and summaries

for each topic, and numerous theorems, proofs, and exercises that reinforce each chapter's precepts. Two helpful indexes conclude the text, along with answers to all odd-numbered exercises. In addition to its value to undergraduate students of mathematics, computer science, and secondary mathematics education, this volume provides an excellent reference for computer science professionals.

what is a trivial solution in linear algebra: Quantum Mechanics Caio Lima Firme, 2022-06-15 Main features: i) A different approach for teaching Quantum Mechanics encompassing old quantum mechanics, matrix mechanics and wave mechanics in a historical perspective which helps to consolidate most important concepts of Quantum Mechanics; ii) Original information from the most important papers of Quantum Mechanics; iii) Derivation of all important equations of Quantum Mechanics, for example, Heisenberg's uncertainty principle, de Broglie's wave-particle duality, Schrödinger's wave equation, etc., showing their interrelations through Dirac's equations and other applications of matrix and wave mechanics; iv) Comprehensive mathematical support for the understanding of Quantum Mechanics; derivation of all equations make reading easier; v) The illustrations of the book cover examples, exercises and do-it-yourself activities; vi) Fundamentals of Fortran and numerical calculation along with the source codes for numerical solutions of several mathematical and quantum problems. All source codes are in the author's site: (https://www.fortrancodes.com/); vii) Chapters devoted to linear algebra and differential equations applied to quantum mechanics and their numerical solutions; viii) Complete solution for the one-electron and two-electron problems using Schrödinger's time independent equation along with their source codes.

what is a trivial solution in linear algebra: Linear Algebra Henry Helson, 2017-07-24 Linear Algebra is an important part of pure mathematics, and is needed for applications in every part of mathematics, natural science and economics. However, the applications are not so obvious as those of calculus. Therefore, one must study Linear Algebra as pure mathematics, even if one is only interested in applications. Most students find the subject difficult because it is abstract. Many texts try to avoid the difficulty by emphasizing calculations and suppressing the mathematical content of the subject. This text proceeds from the view that it is best to present the difficulties honestly, but as concisely and simply as possible. Although the text is shorter than others, all the material of a semester course is included. In addition, there are sections on least squares approximation and factor analysis; and a final chapter presents the matrix factorings that are used in Numerical Analysis.

what is a trivial solution in linear algebra: A First Course in Systems Biology Eberhard Voit, 2017-09-05 A First Course in Systems Biology is an introduction for advanced undergraduate and graduate students to the growing field of systems biology. Its main focus is the development of computational models and their applications to diverse biological systems. The book begins with the fundamentals of modeling, then reviews features of the molecular inventories that bring biological systems to life and discusses case studies that represent some of the frontiers in systems biology and synthetic biology. In this way, it provides the reader with a comprehensive background and access to methods for executing standard systems biology tasks, understanding the modern literature, and launching into specialized courses or projects that address biological questions using theoretical and computational means. New topics in this edition include: default modules for model design, limit cycles and chaos, parameter estimation in Excel, model representations of gene regulation through transcription factors, derivation of the Michaelis-Menten rate law from the original conceptual model, different types of inhibition, hysteresis, a model of differentiation, system adaptation to persistent signals, nonlinear nullclines, PBPK models, and elementary modes. The format is a combination of instructional text and references to primary literature, complemented by sets of small-scale exercises that enable hands-on experience, and large-scale, often open-ended questions for further reflection.

what is a trivial solution in linear algebra: *Mathematical Analysis and Applications* J. V. Deshpande, 2004 Offers an introduction to higher mathematics for students. Starting with a

discussion of real numbers and functions, the text introduces standard topics of differential and integral calculus together with their applications such as differential equations, numerical analysis, and approximation methods.

what is a trivial solution in linear algebra: Integral Equations: A Practical Treatment, from Spectral Theory to Applications David Porter, David S. G. Stirling, 1990-09-28 This book gives a rigorous and practical treatment of integral equations. These are significant because they occur in many problems in mathematics, physics and engineering and they offer a powerful (sometimes the only) technique for solving these problems. The book aims to tackle the solution of integral equations using a blend of abstract 'structural' results and more direct, down-to-earth mathematics. The interplay between these two approaches is a central feature of the text and it allows a thorough account to be given of many of the types of integral equation which arise in application areas. Since it is not always possible to find explicit solutions of the problems posed, much attention is devoted to obtaining qualitative information and approximations to the solutions, with the associated error estimates. This treatment is intended for final year mathematics undergraduates, postgraduates and research workers in application areas such as numerical analysis and fluid mechanics.

what is a trivial solution in linear algebra: An Introduction to Partial Differential Equations Michael Renardy, Robert C. Rogers, 2004-01-08 Partial differential equations are fundamental to the modeling of natural phenomena. The desire to understand the solutions of these equations has always had a prominent place in the efforts of mathematicians and has inspired such diverse fields as complex function theory, functional analysis, and algebraic topology. This book, meant for a beginning graduate audience, provides a thorough introduction to partial differential equations.

what is a trivial solution in linear algebra: Advanced Algebra Palmer Hampton Graham, Frederick Wallace John, 1929

what is a trivial solution in linear algebra: *Mathematics for Engineers and Scientists* Alan Jeffrey, 2004-08-10 Since its original publication in 1969, Mathematics for Engineers and Scientists has built a solid foundation in mathematics for legions of undergraduate science and engineering students. It continues to do so, but as the influence of computers has grown and syllabi have evolved, once again the time has come for a new edition. Thoroughly rev

what is a trivial solution in linear algebra: Fundamentals of Ordinary Differential Equations Uri Elias, 2025-06-21 This textbook offers an introduction to ODEs that focuses on the qualitative behavior of differential equations rather than specialized methods for solving them. The book is organized around this approach with important topics, such as existence, uniqueness, qualitative behaviour, and stability, appearing in early chapters and explicit solution methods covered later. Proofs are included in an approachable manner, which are first motivated by describing the main ideas in a general sense before being written out in detail. A clear and accessible writing style is used, containing numerous examples and calculations throughout the text. Two appendices offer readers further material to explore, with the first using the orbits of the planets as an illustrative example and the second providing insightful historical notes. After reading this book, students will have a strong foundation for a course in PDEs or mathematical modeling. Fundamentals of Ordinary Differential Equations is suitable for an undergraduate course for students who have taken basic calculus and linear algebra courses, and who are able to read and write basic proofs. Because of its detailed approach, it is also conducive to self-study.

what is a trivial solution in linear algebra: Algorithms with JULIA Clemens Heitzinger, 2022-12-12 This book provides an introduction to modern topics in scientific computing and machine learning, using JULIA to illustrate the efficient implementation of algorithms. In addition to covering fundamental topics, such as optimization and solving systems of equations, it adds to the usual canon of computational science by including more advanced topics of practical importance. In particular, there is a focus on partial differential equations and systems thereof, which form the basis of many engineering applications. Several chapters also include material on machine learning (artificial neural networks and Bayesian estimation). JULIA is a relatively new programming

language which has been developed with scientific and technical computing in mind. Its syntax is similar to other languages in this area, but it has been designed to embrace modern programming concepts. It is open source, and it comes with a compiler and an easy-to-use package system. Aimed at students of applied mathematics, computer science, engineering and bioinformatics, the book assumes only a basic knowledge of linear algebra and programming.

what is a trivial solution in linear algebra: Ordinary Differential Equations with **Applications** Ali Mason, 2018-10-20 Ordinary differential equations (ODEs) arise in many contexts of mathematics and science (social as well as natural). Mathematical descriptions of change use differentials and derivatives. Various differentials, derivatives, and functions become related to each other via equations, and thus a differential equation is a result that describes dynamically changing phenomena, evolution, and variation. Often, quantities are defined as the rate of change of other quantities (for example, derivatives of displacement with respect to time), or gradients of quantities, which is how they enter differential equations. Ordinary differential equations are equations to be solved in which the unknown element is a function, rather than a number, and in which the known information relates that function to its derivatives. Few such equations admit an explicit answer, but there is a wealth of qualitative information describing the solutions and their dependence on the defining equation. Systems of differential equations form the basis of mathematical models in a wide range of fields - from engineering and physical sciences to finance and biological sciences. Differential equations are relations between unknown functions and their derivatives. Computing numerical solutions to differential equations is one of the most important tasks in technical computing, and one of the strengths of MATLAB. The book explains the origins of various types of differential equations. The scope of the book is limited to linear differential equations of the first order, linear differential equation of higher order, partial differential equations and special methods of solution of differential equations of second order, keeping in view the requirement of students.

what is a trivial solution in linear algebra: Fundamental Mathematical Modeling of Additive Manufacturing Juha Jeronen, Tero Tuovinen, Matti Kurki, 2023-12-07 This book elucidates the fundamental thermomechanical behaviour inherent in the 3D printing process within a laser-based powder bed fusion (L-PBF) system. It presents foundational concepts and provides in-depth derivations of the governing equations. The analysis encompasses arbitrary anisotropic linear viscoelastic materials, accounting for thermal effects. The authors leverage the theory of axially moving materials, a framework previously employed in the analysis of production processes within the process industry. They introduce a coordinate frame that moves in tandem with the printing laser, adopting an Eulerian perspective towards the in-motion solid. Designed for graduate students and researchers, this book is poised to foster a profound comprehension and spur innovative technological advancements in the realm of additive manufacturing.

what is a trivial solution in linear algebra: Multivariate Polysplines Ognyan Kounchev, 2001-06-11 Multivariate polysplines are a new mathematical technique that has arisen from a synthesis of approximation theory and the theory of partial differential equations. It is an invaluable means to interpolate practical data with smooth functions. Multivariate polysplines have applications in the design of surfaces and smoothing that are essential in computer aided geometric design (CAGD and CAD/CAM systems), geophysics, magnetism, geodesy, geography, wavelet analysis and signal and image processing. In many cases involving practical data in these areas, polysplines are proving more effective than well-established methods, such as kKriging, radial basis functions, thin plate splines and minimum curvature. - Part 1 assumes no special knowledge of partial differential equations and is intended as a graduate level introduction to the topic - Part 2 develops the theory of cardinal Polysplines, which is a natural generalization of Schoenberg's beautiful one-dimensional theory of cardinal splines - Part 3 constructs a wavelet analysis using cardinal Polysplines. The results parallel those found by Chui for the one-dimensional case - Part 4 considers the ultimate generalization of Polysplines - on manifolds, for a wide class of higher-order elliptic operators and satisfying a Holladay variational property

what is a trivial solution in linear algebra: Lectures on Mathematics for Economic and

Financial Analysis Giorgio Giorgi, Bienvenido Jiménez, Vicente Novo, 2025-03-21 This book offers a comprehensive yet approachable introduction to essential mathematical concepts, tailored specifically for undergraduate and first-year graduate students in Economics and Social Sciences. Based on lectures delivered at the University of Pavia's Department of Economics and Management, and also in UNED' Department of Applied Mathematics in Madrid, it aims to equip students with the mathematical tools necessary to better understand their courses in economics and finance, where math is applied directly. Unlike texts focused on formalized topics like Mathematical Economics or Operations Research, this book presents basic mathematical principles and methods that are immediately relevant to students. With a clear, accessible approach, it includes numerous examples, some with economic applications, to illustrate key concepts and make them easier to grasp. The authors have carefully chosen proofs that are straightforward and beneficial for students to encounter, offering an introduction to important proof techniques without overwhelming complexity. The book also provides a select bibliography, allowing readers to explore topics in greater depth if desired. Drawing on years of teaching experience, the authors have created a valuable resource that serves as both a foundation and a practical guide for students navigating the mathematical aspects of economics and social science courses.

Related to what is a trivial solution in linear algebra

TRIVIAL Definition & Meaning - Merriam-Webster The meaning of TRIVIAL is of little worth or importance. How to use trivial in a sentence. Did you know?

TRIVIAL | **English meaning - Cambridge Dictionary** TRIVIAL definition: 1. having little value or importance: 2. A trivial problem is easy to solve: 3. having little. Learn more

trivial adjective - Definition, pictures, pronunciation and usage Definition of trivial adjective from the Oxford Advanced Learner's Dictionary. not important or serious; not worth considering. I know it sounds trivial, but I'm worried about it. I'll try to fix

Trivial - definition of trivial by The Free Dictionary Define trivial. trivial synonyms, trivial pronunciation, trivial translation, English dictionary definition of trivial. adj. 1. Of little significance or value. 2. Concerned with or involving unimportant

trivial, adj. & n. meanings, etymology and more | Oxford English trivial, adj. & n. meanings, etymology, pronunciation and more in the Oxford English Dictionary

Trivial - Definition, Meaning & Synonyms | Something that is trivial is not important or significant, such as the trivial details you shared with me about your trip to the post office this morning. Trivial can also describe something that isn't

TRIVIAL Definition & Meaning | Trivial definition: of very little importance or value; insignificant.. See examples of TRIVIAL used in a sentence

trivial - Dictionary of English trivial /'trɪviəl/ adj. of or relating to trivia: He was overreacting to what was really a trivial offense on her part. triviality /,trɪvi'ælɪti/ n., pl. -ties. [uncountable]: the triviality of considering what

trivial - Wiktionary, the free dictionary 6 days ago trivial (comparative more trivial, superlative most trivial) "All which details, I have no doubt, Jones, who reads this book at his Club, will pronounce to be excessively foolish, trivial,

TRIVIAL Synonyms: 109 Similar and Opposite Words - Merriam-Webster Synonyms for TRIVIAL: minor, small, little, unimportant, slight, insignificant, worthless, trifling; Antonyms of TRIVIAL: important, major, significant, substantial, meaningful, big, momentous,

TRIVIAL Definition & Meaning - Merriam-Webster The meaning of TRIVIAL is of little worth or importance. How to use trivial in a sentence. Did you know?

TRIVIAL | **English meaning - Cambridge Dictionary** TRIVIAL definition: 1. having little value or importance: 2. A trivial problem is easy to solve: 3. having little. Learn more

trivial adjective - Definition, pictures, pronunciation and usage notes Definition of trivial adjective from the Oxford Advanced Learner's Dictionary. not important or serious; not worth considering. I know it sounds trivial, but I'm worried about it. I'll try to fix

Trivial - definition of trivial by The Free Dictionary Define trivial. trivial synonyms, trivial pronunciation, trivial translation, English dictionary definition of trivial. adj. 1. Of little significance or value. 2. Concerned with or involving unimportant

trivial, adj. & n. meanings, etymology and more | Oxford English trivial, adj. & n. meanings, etymology, pronunciation and more in the Oxford English Dictionary

Trivial - Definition, Meaning & Synonyms | Something that is trivial is not important or significant, such as the trivial details you shared with me about your trip to the post office this morning. Trivial can also describe something that isn't

TRIVIAL Definition & Meaning | Trivial definition: of very little importance or value; insignificant.. See examples of TRIVIAL used in a sentence

trivial - Dictionary of English trivial /'trɪviəl/ adj. of or relating to trivia: He was overreacting to what was really a trivial offense on her part. triviality /ˌtrɪviˈælɪti/ n., pl. -ties. [uncountable]: the triviality of considering what

trivial - Wiktionary, the free dictionary 6 days ago trivial (comparative more trivial, superlative most trivial) "All which details, I have no doubt, Jones, who reads this book at his Club, will pronounce to be excessively foolish, trivial,

TRIVIAL Synonyms: 109 Similar and Opposite Words - Merriam-Webster Synonyms for TRIVIAL: minor, small, little, unimportant, slight, insignificant, worthless, trifling; Antonyms of TRIVIAL: important, major, significant, substantial, meaningful, big, momentous,

Back to Home: https://ns2.kelisto.es