symmetric algebra

symmetric algebra is a fundamental concept in the field of algebra that has far-reaching
implications in various branches of mathematics, including representation theory, algebraic geometry,
and combinatorics. At its core, symmetric algebra provides a framework for constructing polynomial
rings that are invariant under the action of a group, particularly the symmetric group. This article will
delve into the definition and properties of symmetric algebra, explore its applications, and discuss its
importance in modern mathematics. Additionally, we will cover the relationship between symmetric
algebra and other algebraic structures, along with examples and practical applications.
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Definition and Basic Properties of Symmetric Algebra

Symmetric algebra, denoted typically as Sym(V) for a vector space V, can be understood as the
algebra of symmetric tensors over V. More formally, it is constructed as the quotient of the tensor
algebra of V by the ideal generated by elements of the form v ® w - w ® v for all v, w in V. This
construction ensures that the resulting algebra retains the symmetric property, making it particularly
useful in many mathematical contexts.

One of the fundamental properties of symmetric algebra is that it is commutative. This means that for
any two elements x and y in Sym(V), the product xy is equal to yx. This commutativity is crucial for
various applications, as it allows for the manipulation of polynomials and symmetric functions without
concern for the order of multiplication.

Another important property is that symmetric algebra is graded. The elements of Sym(V) can be
classified according to their degree, where the degree of a tensor corresponds to the number of
factors in the tensor product. Specifically, the degree n part of Sym(V) is generated by symmetric
tensors of degree n, which correspond to homogeneous polynomials of degree n in the variables that
represent the basis of V.

Construction of Symmetric Algebra

The construction of symmetric algebra involves several steps that build upon the basic properties of
vector spaces and tensor products. To understand this process, it is useful to begin with the tensor



algebra.

Tensor Algebra

The tensor algebra T(V) of a vector space V is the direct sum of all tensor powers of V:

eT(V)=Ve (VeV)e(VeVeV)e..

Here, each component T*n(V) =V ® ... ® V (n times) is the n-th tensor power of the vector space.
The elements of T(V) are called tensors, and they can be manipulated using the rules of tensor
multiplication.

Quotient by Symmetric Relations

To obtain symmetric algebra from the tensor algebra, we take the quotient of T(V) by the ideal
generated by the relations that enforce symmetry. This ideal, often denoted as |, is generated by all
the elements of the form:
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for all vectors v and w in V. This step effectively identifies tensors that differ only by the order of their
factors, resulting in an algebra where the multiplication operation respects the symmetric property.

Applications of Symmetric Algebra

Symmetric algebra finds applications across various fields of mathematics. Its ability to describe
polynomial functions and invariant objects makes it particularly valuable in algebraic geometry and
representation theory.

Algebraic Geometry

In algebraic geometry, symmetric algebra is used to study geometric objects defined by polynomial
equations. The coordinate ring of an algebraic variety can often be expressed in terms of symmetric
polynomials. This relationship aids in understanding the geometric properties of varieties and their
embeddings into projective spaces.

Representation Theory

In representation theory, symmetric algebra helps in the construction of representations of symmetric
groups and general linear groups. The action of these groups on vector spaces can be analyzed
through symmetric polynomials and their invariants, leading to deeper insights into the structure of
representations and character theory.



Symmetric Algebra and Other Algebraic Structures

Symmetric algebra interacts with various other algebraic structures, enriching the mathematical
landscape.

Relation to Exterior Algebra

While symmetric algebra deals with symmetric tensors, exterior algebra is concerned with
antisymmetric tensors. The relationship between symmetric and exterior algebras allows
mathematicians to explore dualities and transformations between different kinds of algebraic
structures, particularly in linear algebra and multilinear algebra.

Link to Polynomial Rings

Symmetric algebra can be viewed as a specific type of polynomial ring. In fact, when V is a finite-
dimensional vector space over a field, Sym(V) is isomorphic to the polynomial ring in as many
variables as the dimension of V. This connection provides a bridge between algebraic and geometric
perspectives, enabling various applications in both domains.

Examples of Symmetric Algebra in Use

To better understand the concepts of symmetric algebra, consider some practical examples that
illustrate its utility.

Example 1: Symmetric Polynomials

One of the simplest instances of symmetric algebra is the case of symmetric polynomials in several
variables. For example, the polynomial p(x, y) = xy + yx is symmetric in two variables x and y. The
space of symmetric polynomials can be analyzed using symmetric algebra, allowing for classification
and manipulation of these polynomials.

Example 2: Invariants of Group Actions

In the study of group actions, symmetric algebra is employed to construct invariants under the action
of a group. For instance, if a group G acts on a vector space V, the symmetric algebra Sym(V) can be

used to produce polynomial invariants that remain unchanged under the action of G. These invariants
are crucial in various areas, such as the study of algebraic varieties and the classification of objects in
representation theory.

Conclusion

In summary, symmetric algebra is a vital concept in the realm of mathematics, providing a powerful
framework for understanding polynomial structures and their applications across various fields. From
its construction through tensor algebra to its applications in algebraic geometry and representation
theory, symmetric algebra plays a critical role in advancing mathematical knowledge. Its relationship
with other algebraic structures further enhances its significance, making it a fundamental area of
study for mathematicians. As the field continues to evolve, the importance of symmetric algebra in



both theoretical and applied mathematics will undoubtedly grow.

Q: What is symmetric algebra?

A: Symmetric algebra is an algebraic structure that arises from the tensor algebra of a vector space
by imposing symmetric relations, leading to a commutative algebra that models polynomial functions
invariant under the action of symmetric groups.

Q: How is symmetric algebra constructed?

A: Symmetric algebra is constructed by taking the tensor algebra of a vector space and quotienting
by the ideal generated by elements that enforce symmetry, resulting in an algebra where the
multiplication operation respects the symmetric property.

Q: What are the applications of symmetric algebra?

A: Symmetric algebra has applications in algebraic geometry, representation theory, and
combinatorics, particularly in studying polynomial functions, invariant theory, and the properties of
algebraic varieties.

Q: How does symmetric algebra relate to polynomial rings?

A: Symmetric algebra can be seen as a specific type of polynomial ring, where the elements
correspond to symmetric polynomials, and it provides a bridge between algebraic and geometric
perspectives.

Q: What is the difference between symmetric and exterior
algebra?

A: Symmetric algebra deals with symmetric tensors, while exterior algebra concerns antisymmetric
tensors. Their relationship allows for the exploration of dualities and transformations between
different algebraic structures.

Q: Can symmetric algebra be applied in representation
theory?

A: Yes, symmetric algebra is used in representation theory to construct representations of symmetric
groups and general linear groups, allowing for a deeper understanding of the structure of
representations and character theory.

Q: What are symmetric polynomials?

A: Symmetric polynomials are polynomials that remain invariant under any permutation of their
variables. They play a crucial role in the theory of symmetric algebra and can be analyzed using the



properties of symmetric tensors.

Q: What is an example of symmetric algebra in use?

A: An example of symmetric algebra in use is the construction of polynomial invariants under the
action of a group, which are essential in the study of algebraic varieties and representation theory.

Q: Why is symmetric algebra important in modern
mathematics?

A: Symmetric algebra is important in modern mathematics because it provides a foundational
framework for understanding polynomial structures, group actions, and the interplay between algebra
and geometry, with implications in various mathematical disciplines.
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