using algebra tiles to complete the square

using algebra tiles to complete the square is an effective visual method that enhances understanding of quadratic expressions and their transformations. By employing algebra tiles, students can physically manipulate and visualize the components of a quadratic equation, making the process of completing the square more intuitive. This article delves into the concept of completing the square, the role of algebra tiles in this method, step-by-step instructions on how to use them, and their benefits in learning. We will also explore common misconceptions and provide practical examples to solidify understanding.

This comprehensive guide is structured to provide educators and learners alike with a thorough understanding of using algebra tiles to complete the square.

- Understanding Completing the Square
- The Role of Algebra Tiles
- Step-by-Step Guide to Using Algebra Tiles
- Benefits of Using Algebra Tiles
- Common Misconceptions
- Practical Examples

Understanding Completing the Square

Completing the square is a mathematical technique used to transform a quadratic equation into a perfect square trinomial. This process is crucial for solving quadratic equations and for understanding the properties of parabolas. The general form of a quadratic equation is $ax^2 + bx + c = 0$. The goal of completing the square is to rewrite this equation in the form of $(x - p)^2 = q$, where p and q are constants.

The method of completing the square involves three main steps: isolating the constant term, adding a specific value to both sides of the equation to form a perfect square, and then factoring the resulting quadratic expression. This technique not only simplifies the solving process but also provides insights into the vertex form of a parabola, which is pivotal in graphing quadratic functions.

The Role of Algebra Tiles

Algebra tiles are manipulatives used to represent mathematical concepts

visually. They consist of tiles of various sizes, typically representing units, linear factors, and squared terms. In the context of completing the square, algebra tiles serve as a hands-on tool that enables students to visualize the components of a quadratic equation.

Each type of tile plays a specific role:

- Unit tiles: Represent the constant term in the equation.
- Linear tiles: Represent the linear coefficient, corresponding to the variable x.
- Square tiles: Represent the squared term, corresponding to x^2 .

By manipulating these tiles, students can physically see how the components of a quadratic equation interact, making it easier to grasp the concept of completing the square. This tactile experience can significantly enhance comprehension, especially for visual learners.

Step-by-Step Guide to Using Algebra Tiles

Using algebra tiles to complete the square involves several clear steps. This guide outlines a systematic approach that educators and students can follow:

- 1. Set Up the Problem: Start with a quadratic equation in standard form, such as $x^2 + 6x + 5$.
- 2. Arrange the Tiles: Use square tiles to represent the x^2 term, linear tiles for the 6x term, and unit tiles for the constant 5.
- 3. **Group the Tiles**: Group the linear tiles into pairs to help visualize how they can form a square. In this example, you would group 6 linear tiles into 3 pairs.
- 4. Create a Perfect Square: Add enough unit tiles to form a square with the linear tiles. In this case, add 9 unit tiles to complete the square (as $(3)^2 = 9$).
- 5. Write the Equation: After rearranging the tiles, express the equation as a perfect square. It will look like $(x + 3)^2 = 4$.
- 6. Solve: Finally, solve for x by taking the square root of both sides.

This step-by-step process allows students to engage actively with the material, reinforcing their understanding of both algebra tiles and the concept of completing the square.

Benefits of Using Algebra Tiles

The use of algebra tiles in completing the square offers numerous educational benefits. These advantages contribute significantly to the learning experience:

- **Visual Learning:** Algebra tiles provide a visual representation of abstract concepts, fostering deeper understanding.
- Hands-On Experience: The tactile nature of algebra tiles engages students and encourages active participation in the learning process.
- Enhanced Problem-Solving Skills: Students develop critical thinking skills as they manipulate tiles to explore different quadratic expressions.
- Improved Retention: The interactive approach helps students retain concepts better than through traditional methods.
- Diagnostic Tool: Teachers can use algebra tiles to assess students' understanding and identify areas needing further clarification.

Common Misconceptions

Despite the advantages of using algebra tiles, several misconceptions can arise during the learning process. Addressing these misconceptions is crucial for effective teaching:

- Misunderstanding the Purpose: Some students may not grasp that completing the square is used for solving quadratic equations, leading to confusion about its relevance.
- Incorrect Grouping: Students may struggle with grouping linear tiles correctly, resulting in errors when forming a perfect square.
- Overlooking the Constant: Failing to account for the constant term can lead to incomplete or incorrect equations.

Educators should be proactive in clarifying these misconceptions by providing clear examples and additional practice opportunities. This ensures that students develop a robust understanding of the process.

Practical Examples

To solidify understanding, consider the following practical example using algebra tiles:

Let's complete the square for the equation $x^2 + 8x + 12$.

- 1. Start with the equation and set up the corresponding algebra tiles: 1 square tile for x^2 , 8 linear tiles for 8x, and 12 unit tiles for 12.
- 2. Group the 8 linear tiles into 4 pairs.
- 3. To form a perfect square, add 16 unit tiles (since $(4)^2 = 16$).
- 4. Rearranging gives $(x + 4)^2 = 4$.
- 5. Solve for x: $x + 4 = \pm 2$, hence x = -2 or x = -6.

This example illustrates the process clearly and reinforces the effectiveness of using algebra tiles to complete the square.

Conclusion

Using algebra tiles to complete the square is a powerful instructional strategy that enhances students' understanding of quadratic equations. By engaging with physical manipulatives, learners can visualize and grasp the concept of completing the square more effectively. This method not only aids in solving quadratic equations but also fosters critical thinking and problem-solving skills. As educators incorporate algebra tiles in their teaching, they can help demystify complex mathematical concepts and promote a deeper appreciation for algebra among students.

Q: What are algebra tiles?

A: Algebra tiles are manipulatives used in mathematics education that represent variables and constants visually, helping students to understand algebraic concepts through hands-on interaction.

Q: How does completing the square help in solving quadratic equations?

A: Completing the square transforms a quadratic equation into a form that is easier to solve, revealing the roots of the equation by allowing for extraction of square roots, thus providing solutions in vertex form.

Q: Can algebra tiles be used for other algebraic concepts?

A: Yes, algebra tiles can also be used to teach various algebraic concepts, including factoring, polynomial operations, and understanding expressions, making them versatile educational tools.

Q: What are the advantages of using physical manipulatives like algebra tiles in math education?

A: Physical manipulatives help to engage students, enhance understanding through visual representation, facilitate active learning, and improve retention of mathematical concepts.

Q: Are there any limitations to using algebra tiles?

A: While algebra tiles are beneficial, they may not be suitable for all learners, and some students might require additional explanations or alternative methods to fully grasp the concepts being taught.

Q: How can teachers assess students' understanding when using algebra tiles?

A: Teachers can observe students as they manipulate tiles, ask questions during the process, and assign exercises that require students to explain their reasoning and the steps they took using the tiles.

Q: What common errors do students make when completing the square with algebra tiles?

A: Common errors include misgrouping linear tiles, neglecting the constant terms, and failing to recognize when a perfect square is achieved, leading to incorrect equations.

Q: How can students practice completing the square with algebra tiles at home?

A: Students can create their own algebra tiles using paper or other materials, work through practice problems, and simulate the process of completing the square to reinforce their understanding.

Q: What is the relationship between completing the square and the quadratic formula?

A: Completing the square provides a derivation of the quadratic formula. By rewriting a quadratic equation in vertex form, students can see how the quadratic formula emerges from this process.

Q: Can algebra tiles be used for complex numbers in quadratic equations?

A: Yes, while algebra tiles primarily focus on real numbers, they can be adapted to illustrate concepts involving complex numbers, especially in advanced algebra courses.

Using Algebra Tiles To Complete The Square

Find other PDF articles:

https://ns2.kelisto.es/gacor1-02/pdf?ID=XmU62-9825&title=advances-in-active-portfolio-management-new-developments-in-quantitative.pdf

using algebra tiles to complete the square: Exploring Math with Technology Allison W. McCulloch, Jennifer N. Lovett, 2023-08-01 This timely book provides support for secondary mathematics teachers learning how to enact high-quality, equitable math instruction with dynamic, mathematics-specific technologies. Using practical advice from their own work as well as from interviews with 23 exceptional technology-using math teachers, the authors develop a vision of teaching with technology that positions all students as powerful doers of mathematics using math-specific technologies (e.g., dynamic graphing and geometry applications, data exploration tools, computer algebra systems, virtual manipulatives). Each chapter includes sample tasks, advice from technology-using math teachers, and guiding questions to help teachers with implementation. The book offers a rich space for secondary math teachers to explore important pedagogical practices related to teaching with technology, combined with broader discussions of changing the narratives about students – emphasizing the mathematics they can do and the mathematics they deserve. Accompanying online support materials include video vignettes of teachers and students interacting around technology-enhanced tasks in the classroom, as well as examples of more than 30 high-quality technology-enhanced tasks.

using algebra tiles to complete the square: GCSE Maths for Neurodivergent Learners Judy Hornigold, Rose Jewell, 2022-08-18 We all have to take GCSE maths, but that doesn't mean we all find it easy! If you have been struggling with maths and find working with numbers particularly tough, this is the go-to GCSE maths study guide to help you ace your exams. This is the first GCSE maths study guide (covering number, proportion and algebra) that uses engaging multisensory methods of learning for students with specific learning differences. It offers unique insight into why you may find maths extra challenging and gives practical advice on how you can adapt your studying processes to suit the way that you learn best. With a range of study strategies and fun activities, the guide covers topics from fractions, multiplication and division to algebra, quadratics and percentages. With everything tailored to suit young people who think and learn differently, this GCSE maths study guide has all you need to improve your maths skills...and maybe even learn to love maths!

using algebra tiles to complete the square: $\underline{\text{Glencoe Algebra 1}}$, 2001

using algebra tiles to complete the square: Making Sense of Mathematics for Teaching High School Edward C. Nolan, Juli K. Dixon, Farhsid Safi, Erhan Selcuk Haciomeroglu, 2016-05-19 Develop a deep understanding of mathematics by grasping the context and purpose behind various strategies. This user-friendly resource presents high school teachers with a logical progression of pedagogical actions, classroom norms, and collaborative teacher team efforts to increase their knowledge and improve mathematics instruction. Explore strategies and techniques to effectively learn and teach significant mathematics concepts and provide all students with the precise, accurate information they need to achieve academic success. Combine student understanding of functions and algebraic concepts so that they can better decipher the world. Benefits Dig deep into mathematical modeling and reasoning to improve as both a learner and teacher of mathematics. Explore how to develop, select, or modify mathematics tasks in order to balance cognitive demand and engage students. Discover the three important norms to uphold in all mathematics classrooms. Learn to apply the tasks, questioning, and evidence (TQE) process to ensure mathematics instruction is focused, coherent, and rigorous. Gain clarity about the most productive progression of

mathematical teaching and learning for high school. Watch short videos that show what classrooms that are developing mathematical understanding should look like. Contents Introduction Equations and Functions Structure of Equations Geometry Types of Functions Function Modeling Statistics and Probability Epilogue: Next Steps Appendix: Weight Loss Study Data References Index

using algebra tiles to complete the square: The Well-Rounded Math Student Sherri Martinie, Jessica Lane, Janet Stramel, Jolene Goodheart Peterson, Julie Thiele, 2025-05-26 Integrate a holistic approach to mathematics success with essential personal and social skills Teaching math is more than just numbers. It's about shaping future-ready students who are not only academically strong but thrive socially and emotionally. Research shows that learning both intrapersonal and interpersonal skills helps students academically, and teachers play a crucial role in providing social-emotional support. The Well-Rounded Math Student helps mathematics teachers in Grades K-12 foster both their students' academic prowess and their social and emotional development. Through the lens of the Standards for Mathematical Practice, the book emphasizes the importance of intentionally teaching and promoting intrapersonal and interpersonal skills, or Next Generation skills, alongside mathematical concepts. The authors provide step-by-step guidance on how small adjustments in lesson planning can have a profound impact on students' growth. Providing teachers with a new lens to leverage in their planning as well as concrete ways to use their mathematics lessons to explicitly teach and reinforce social and emotional competencies, this book: Holds a strengths-based mindset and approach—for both teachers and students Highlights the importance of the science and the art of teaching to enhance social development, human connection, classroom management, and community within classrooms Stresses that the overarching goal of education is to help students become responsible adults who are ready for their future Includes a lesson planning guide, competency builder activities, vignettes of enhanced lessons across grade bands, reflection questions, and suggestions for taking action The Well-Rounded Math Student bridges critical intrapersonal and interpersonal elements to help educators create an environment where students excel in math and develop the life skills they'll carry forever.

using algebra tiles to complete the square: Algebra 1 Ron Larson, McDougal Littell, 2001 using algebra tiles to complete the square: Modeling With Mathematics COMAP, Gary Cosenza, Region IV Ed Service Ctr, 2006-02-28 Designed for juniors and seniors in high school who have not succeeded using traditional approaches to teaching mathematics, but want to prepare for Algebra II or a College Algebra course -- Publisher.

using algebra tiles to complete the square: Making Math Accessible to English Language Learners (Grades 9-12) r4Educated Solutions, 2011-12-30 Making Math Accessible for English Language Learners provides practical classroom tips and suggestions to strengthen the quality of classroom instruction for teachers of mathematics. The tips and suggestions are based on research in practices and strategies that address the affective, linguistic, and cognitive needs of English language learners. Although this resource centers on teaching English language learners, many of the tips and suggestions benefit all students. Making Math Accessible for English Language Learners follows five case studies of composite student profiles throughout the book with opportunities for reflection to increase personal awareness of both the teacher's role and students' needs in the mathematics classroom, tasks to provide interaction with the content of the book, and hot tips for ideas applicable to real-world classroom situations.

using algebra tiles to complete the square: The Common Core Mathematics Companion: The Standards Decoded, High School Frederick L. Dillon, W. Gary Martin, Basil M. Conway IV, Marilyn E. Strutchens, 2017-09-12 Your User's Guide to the Mathematics Standards When it comes to mathematics, standards aligned is achievement aligned... In the short time since The Common Core Mathematics Companions for grades K-2, 3-5 and 6-8 burst on the scene, they have been lauded as the best resources for making critical mathematics ideas easy to teach. With this brand-new volume, high school mathematics success is at your fingertips. Page by page, the authors lay out the pieces of an in-depth explanation, including The mathematical progression of each conceptual category, starting with modeling as a unifying theme, and moving through number

& quantity, algebra, functions, geometry, and statistics and probability, building from the 8th grade standards. The mathematics embedded in each conceptual category for a deeper understanding of the content. How standards connect within and across domains, and to previous grade standards, so teachers can better appreciate how they relate. How standards connect with the standards for mathematical practice, with a focus on modeling as a unifying theme. Example tasks, progressions of tasks, and descriptions of what teachers and students should be doing to foster deep learning. The Common Core Mathematics Companion: The Standards Decoded, High School has what every high school teacher needs to provide students with the foundation for the concepts and skills they will be expected to know.

using algebra tiles to complete the square: <u>But Why?</u> Sean Monroe, 2011-10-20 Have you ever wondered why we do certain things in mathematics? Why do we count decimal points when multiplying with decimals or why do we ?invert and multiply? when multiplying with fractions? Or, were you frustrated when you asked for a reason why we convert mixed numbers to improper fractions that way, and the teacher simply said, ?That is the way I learned how.?? This book attempts to answer these questions along with dozens more. If you have ever wondered why we do something in mathematics, this is the book for you. Here are a few of the mysteries that are ?unraveled? in this book: What can?t we divide by zero? Why do we move the decimal point when dividing by a decimal? Why is a ?negative times a negative a positive?? Why is any number raised to the zero power equal to zero?

using algebra tiles to complete the square: Algebra Connections Book Leiva, Miriam A. Leiva, 1996

using algebra tiles to complete the square: How Students Think When Doing Algebra Steve Rhine, Rachel Harrington, Colin Starr, 2018-11-01 Algebra is the gateway to college and careers, yet it functions as the eye of the needle because of low pass rates for the middle school/high school course and students' struggles to understand. We have forty years of research that discusses the ways students think and their cognitive challenges as they engage with algebra. This book is a response to the National Council of Teachers of Mathematics' (NCTM) call to better link research and practice by capturing what we have learned about students' algebraic thinking in a way that is usable by teachers as they prepare lessons or reflect on their experiences in the classroom. Through a Fund for the Improvement of Post-Secondary Education (FIPSE) grant, 17 teachers and mathematics educators read through the past 40 years of research on students' algebraic thinking to capture what might be useful information for teachers to know—over 1000 articles altogether. The resulting five domains addressed in the book (Variables & Expressions, Algebraic Relations, Analysis of Change, Patterns & Functions, and Modeling & Word Problems) are closely tied to CCSS topics. Over time, veteran math teachers develop extensive knowledge of how students engage with algebraic concepts—their misconceptions, ways of thinking, and when and how they are challenged to understand—and use that knowledge to anticipate students' struggles with particular lessons and plan accordingly. Veteran teachers learn to evaluate whether an incorrect response is a simple error or the symptom of a faulty or naïve understanding of a concept. Novice teachers, on the other hand, lack the experience to anticipate important moments in the learning of their students. They often struggle to make sense of what students say in the classroom and determine whether the response is useful or can further discussion (Leatham, Stockero, Peterson, & Van Zoest 2011; Peterson & Leatham, 2009). The purpose of this book is to accelerate early career teachers' "experience" with how students think when doing algebra in middle or high school as well as to supplement veteran teachers' knowledge of content and students. The research that this book is based upon can provide teachers with insight into the nature of a student's struggles with particular algebraic ideas—to help teachers identify patterns that imply underlying thinking. Our book, How Students Think When Doing Algebra, is not intended to be a "how to" book for teachers. Instead, it is intended to orient new teachers to the ways students think and be a book that teachers at all points in their career continually pull of the shelf when they wonder, "how might my students struggle with this algebraic concept I am about to teach?" The primary audience for this book is early career mathematics

teachers who don't have extensive experience working with students engaged in mathematics. However, the book can also be useful to veteran teachers to supplement their knowledge and is an ideal resource for mathematics educators who are preparing preservice teachers.

using algebra tiles to complete the square: Mathematics for Secondary School Teachers Elizabeth G. Bremigan, Ralph J. Bremigan, John D. Lorch, 2011 Mathematics for Secondary School Teachers discusses topics of central importance in the secondary school mathematics curriculum, including functions, polynomials, trigonometry, exponential and logarithmic functions, number and operation, and measurement. Acknowledging diversity in the mathematical backgrounds of pre-service teachers and in the goals of teacher preparation programs, the authors have written a flexible text, through which instructors can emphasize any of the following: Basics: exploration of key pre-college topics from intuitive and rigorous points of view; Connections: exploration of relationships among topics, using tools from college-level mathematics; Extensions: exploration of college-level mathematical topics that have a compelling relationship to pre-college mathematics. Mathematics for Secondary School Teachers provides a balance of discovery learning and direct instruction. Activities and exercises address the range of learning objectives appropriate for future teachers. Beyond the obvious goals of conceptual understanding and computational fluency, readers are invited to devise mathematical explanations and arguments, create examples and visual representations, remediate typical student errors and misconceptions, and analyze student work. Introductory discussion questions encourage prospective teachers to take stock of their knowledge of pre-college topics. A rich collection of exercises of widely varying degrees of difficulty is integrated with the text. Activities and exercises are easily adapted to the settings of individual assignments, group projects, and classroom discussions. Mathematics for Secondary School Teachers is primarily intended as the text for a bridge or capstone course for pre-service secondary school mathematics teachers. It can also be used in alternative licensure programs, as a supplement to a mathematics methods course, as the text for a graduate course for in-service teachers, and as a resource and reference for in-service faculty development.

using algebra tiles to complete the square: Your Mathematics Standards Companion, High School Frederick L. Dillon, W. Gary Martin, Basil M. Conway IV, Marilyn E. Strutchens, 2018-02-06 Transforming the standards into learning outcomes just got a lot easier In this resource, you can see in an instant how teaching to your state standards should look and sound in the classroom. Under the premise that math is math, the authors provide a Cross-Referencing Index for states implementing their own specific mathematics standards, allowing you to see and understand which page number to turn to for standards-based teaching ideas. It's all here, page by page: The mathematical progression of each conceptual category, starting with modeling as a unifying theme and moving through number and quantity, algebra, functions, geometry, and statistics and probability, building from eighth-grade standards The mathematics embedded in each conceptual category for a deeper understanding of the content How standards connect within and across domains and to previous grade standards, so teachers can better appreciate how they relate How content standards connect with the standards for mathematical practice, with a focus on modeling as a unifying theme Example tasks, progressions of tasks, and descriptions of what teachers and students should be doing to foster deep learning Your Mathematics Standards Companion is your one-stop guide for teaching, planning, assessing, collaborating, and designing powerful high school mathematics curriculum in any state or district.

using algebra tiles to complete the square: *TExES Mathematics* 7-12 (235) *Book + Online* Mel Friedman, 2020-08-12 TExES Mathematics 7-12 (235) Test Prep with Online Practice Tests Completely Aligned with Today's Exam REA's TExES Mathematics 7-12 (235) test prep is perfect for teacher education students and career-changing professionals seeking certification as secondary mathematics teachers in Texas. Fined-tuned to help you succeed by a Texas-based math education expert, this Book + Online prep package is fully aligned with the current test framework. Our comprehensive review guides prospective secondary math teachers through all the domains and competencies tested on the TExES 7-12 exam including: Number concepts Patterns and algebra

Geometry and measurement Probability and statistics Mathematical processes and perspectives Mathematical learning, instruction, and assessment The book is rich with examples and exercises that reinforce the concepts covered in each chapter. Two full-length practice tests (both in the book and online) offer realistic practice and are balanced to include every type of question and skill tested on the exam. Go online with us to get your practice delivered in a timed format with automatic scoring and diagnostic feedback to help you zero in on the topics and types of questions that give you trouble now, so you can succeed on test day. This test prep is a must-have for anyone who wants to become a Texas secondary math teacher!

using algebra tiles to complete the square: Algebra 1 , 2003

using algebra tiles to complete the square: Yes, but why? Teaching for understanding in mathematics Ed Southall, 2021-04-07 Getting the right answers in maths is only half the problem. Understanding why what you're doing works is the part that often stumps students and teachers alike. The essential guide for mathematics teachers and those training to teach, Yes, but why? answers all your questions, and sheds light on the hidden connections between everything in mathematics at school. This second edition includes: \cdot A new 'Test yourself' feature in every chapter \cdot More coverage of the four operations \cdot Enhanced discussion of fractions and proportionality \cdot Downloadable figures for use in the classroom

using algebra tiles to complete the square: Teaching Mathematics for the 21st Century Linda Huetinck, Sara N. Munshin, 2008 This third edition of T eaching Mathematics for the 21st Century continues to help teachers let the secret out-to open up to their students the wonderful discoveries and challenges of the pattern-making and problem-solving aspects of a fascinating subject: mathematics. The rationale remains the same-to enable prospective and current teachers to access and use tools and strategies to effectively teach mathematics to contemporary students. Changing demographics, knowledge of how people learn, and technology all impact the way we educate our young people. This edition incorporates lessons and strategies from programs that have proven success in many types of classrooms. Many of these examples help students connect mathematics to real life situations and communicate their understanding of the underlying concepts. Although technology is constantly being upgraded, ways to increase student motivation through its application remains a goal. For example--since applets can enhance a lesson whether the teacher uses a computer projector, a smart board, or has students work individually on computers--we have identified several sources of mathematics applets that can be correlated to various lessons. Research citations and summaries have been updated to reflect current information on teaching and learning. For future teachers.

using algebra tiles to complete the square: Classroom-Ready Rich Algebra Tasks, Grades 6-12 Barbara J. Dougherty, Linda C. Venenciano, 2023-03-15 Stop algebra from being a mathematical gatekeeper. With rich math tasks, all students can succeed. Every teacher strives to make instruction effective and interesting, yet traditional methods of teaching algebra are not working for many students! That's a problem. But the answer isn't to supplement the curriculum with random tasks. Classroom Ready-Rich Math Tasks for Grades 6-12 equips you with a cohesive solution--50+ mathematical tasks that are rich, research-based, standards-aligned, and classroom-tested. The tasks: Are organized into learning progressions that help all students make the leap from arithmetic to algebra Offer students interesting mathematics problems to think about and solve so math is investigative, interactive, and engaging Provide opportunities for you to connect new content to prior knowledge or focus on an underdeveloped concept Engage students in conceptual understanding, procedural practice, and problem solving through critical thinking and application Come with downloadable planning tools, student resource pages, and extension questions Include additional support for students who may be struggling Every learner deserves opportunities to engage in meaningful, rigorous mathematics. And every teacher can develop mathematical thinking and reasoning abilities in students. Part of the bestselling series spanning elementary and middle school, Classroom-Ready Rich Algebra Tasks, Grades 6-12 is a powerful add-on to any core mathematics program at your school.

using algebra tiles to complete the square: Visible Maths Peter Mattock, 2019-02-08 Peter Mattock's Visible Maths: Using representations and structure to enhance mathematics teaching in schools supports teachers in their use of concrete and pictorial representations to illustrate key mathematical ideas and operations. Viewing the maths lesson as an opportunity for pupils to develop a deep understanding of mathematical concepts and relationships, rather than simply to follow fixed processes that lead to 'the answer', is increasingly recognised as the pinnacle of best practice in maths education. In this book, Peter Mattock builds on this approach and explores in colourful detail a variety of visual tools and techniques that can be used in the classroom to deepen pupils' understanding of mathematical operations. Covering vectors, number lines, algebra tiles, ordered-pair graphs and many other representations, Visible Maths equips teachers with the confidence and practical know-how to take their pupils' learning to the next level. The book looks at the strengths, and flaws, of each representation so that both primary and secondary school teachers of maths can make informed judgements about which representations will benefit their pupils. The exploration begins at the very basics of number and operation, and extends all the way through to how the representations apply to algebraic expressions and manipulations. As well as sharing his expert knowledge on the subject, Peter draws on relevant research and his own experience of using the representations in order to support teachers in understanding how these representations can be implemented effectively. Visible Maths also includes a glossary covering the key mathematical terms, as well as a chapter dedicated to answering some of the questions that may arise from the reading of the book. Furthermore, the accompanying diagrams and models are displayed in full colour to illustrate the conceptual takeaways and teaching techniques discussed. Suitable for teachers of maths in primary and secondary school settings.

Related to using algebra tiles to complete the square

What is the difference between 'typedef' and 'using'? Updating the using keyword was specifically for templates, and (as was pointed out in the accepted answer) when you are working with non-templates using and typedef are

PowerShell Syntax \$using - Stack Overflow The Using scope modifier is supported in the following contexts: Remotely executed commands, started with Invoke-Command using the ComputerName, HostName,

What are the uses of "using" in C#? - Stack Overflow User kokos answered the wonderful Hidden Features of C# question by mentioning the using keyword. Can you elaborate on that? What are the uses of using?

.net - use of "using" keyword in c# - Stack Overflow Using the using keyword can be useful.
Using using helps prevent problems using exceptions. Using using can help you use disposable objects more usefully. Using a different

What is the difference between using and await using? And how can It looks like you can only use await using with a IAsyncDisposable and you can only use using with a IDisposable since neither one inherits from the other. The only time you

What is the logic behind the "using" keyword in C++? 239 What is the logic behind the "using" keyword in C++? It is used in different situations and I am trying to find if all those have something in common and there is a reason

grammar - 'I was using', 'I have used', 'I have been using', 'I had I had been using cocaine. Meaning, with a reference point in the past, starting a time before then up to the reference point, I was habitually using cocaine up to and including

What's the problem with "using namespace std;"? The problem with putting using namespace in the header files of your classes is that it forces anyone who wants to use your classes (by including your header files) to also be 'using' (i.e.

How do I use the C#6 "Using static" feature? - Stack Overflow The static Keyword on a using statement will import only the one, specified type (and its nested types). Furthermore you must not give the type name anymore. So just add

How does `USING` keyword work in PostgreSQL? - Stack Overflow I am confused with the USING keyword which is used to join two tables in postgres. I first saw it in another SO post Compare two tables in postgres. I checked the

What is the difference between 'typedef' and 'using'? Updating the using keyword was specifically for templates, and (as was pointed out in the accepted answer) when you are working with non-templates using and typedef are

PowerShell Syntax \$using - Stack Overflow The Using scope modifier is supported in the following contexts: Remotely executed commands, started with Invoke-Command using the ComputerName, HostName,

What are the uses of "using" in C#? - Stack Overflow User kokos answered the wonderful Hidden Features of C# question by mentioning the using keyword. Can you elaborate on that? What are the uses of using?

.net - use of "using" keyword in c# - Stack Overflow Using the using keyword can be useful.
Using using helps prevent problems using exceptions. Using using can help you use disposable objects more usefully. Using a different

What is the difference between using and await using? And how It looks like you can only use await using with a IAsyncDisposable and you can only use using with a IDisposable since neither one inherits from the other. The only time you

What is the logic behind the "using" keyword in C++? 239 What is the logic behind the "using" keyword in C++? It is used in different situations and I am trying to find if all those have something in common and there is a reason

grammar - 'I was using', 'I have used', 'I have been using', 'I had I had been using cocaine. Meaning, with a reference point in the past, starting a time before then up to the reference point, I was habitually using cocaine up to and including

What's the problem with "using namespace std;"? The problem with putting using namespace in the header files of your classes is that it forces anyone who wants to use your classes (by including your header files) to also be 'using' (i.e.

How do I use the C#6 "Using static" feature? - Stack Overflow The static Keyword on a using statement will import only the one, specified type (and its nested types). Furthermore you must not give the type name anymore. So just add

How does `USING` keyword work in PostgreSQL? - Stack Overflow I am confused with the USING keyword which is used to join two tables in postgres. I first saw it in another SO post Compare two tables in postgres. I checked the

What is the difference between 'typedef' and 'using'? Updating the using keyword was specifically for templates, and (as was pointed out in the accepted answer) when you are working with non-templates using and typedef are

PowerShell Syntax \$using - Stack Overflow The Using scope modifier is supported in the following contexts: Remotely executed commands, started with Invoke-Command using the ComputerName, HostName,

What are the uses of "using" in C#? - Stack Overflow User kokos answered the wonderful Hidden Features of C# question by mentioning the using keyword. Can you elaborate on that? What are the uses of using?

.net - use of "using" keyword in c# - Stack Overflow Using the using keyword can be useful.
Using using helps prevent problems using exceptions. Using using can help you use disposable objects more usefully. Using a different

What is the difference between using and await using? And how It looks like you can only use await using with a IAsyncDisposable and you can only use using with a IDisposable since neither one inherits from the other. The only time you

What is the logic behind the "using" keyword in C++? 239 What is the logic behind the "using" keyword in C++? It is used in different situations and I am trying to find if all those have something in common and there is a reason

grammar - 'I was using', 'I have used', 'I have been using', 'I had I had been using cocaine. Meaning, with a reference point in the past, starting a time before then up to the reference point, I was habitually using cocaine up to and including

What's the problem with "using namespace std;"? The problem with putting using namespace in the header files of your classes is that it forces anyone who wants to use your classes (by including your header files) to also be 'using' (i.e.

How do I use the C#6 "Using static" feature? - Stack Overflow The static Keyword on a using statement will import only the one, specified type (and its nested types). Furthermore you must not give the type name anymore. So just add

How does `USING` keyword work in PostgreSQL? - Stack Overflow I am confused with the USING keyword which is used to join two tables in postgres. I first saw it in another SO post Compare two tables in postgres. I checked the

What is the difference between 'typedef' and 'using'? Updating the using keyword was specifically for templates, and (as was pointed out in the accepted answer) when you are working with non-templates using and typedef are

PowerShell Syntax \$using - Stack Overflow The Using scope modifier is supported in the following contexts: Remotely executed commands, started with Invoke-Command using the ComputerName, HostName,

What are the uses of "using" in C#? - Stack Overflow User kokos answered the wonderful Hidden Features of C# question by mentioning the using keyword. Can you elaborate on that? What are the uses of using?

.net - use of "using" keyword in c# - Stack Overflow Using the using keyword can be useful.
Using using helps prevent problems using exceptions. Using using can help you use disposable objects more usefully. Using a different

What is the difference between using and await using? And how can It looks like you can only use await using with a IAsyncDisposable and you can only use using with a IDisposable since neither one inherits from the other. The only time you

What is the logic behind the "using" keyword in C++? 239 What is the logic behind the "using" keyword in C++? It is used in different situations and I am trying to find if all those have something in common and there is a reason

grammar - 'I was using', 'I have used', 'I have been using', 'I had I had been using cocaine. Meaning, with a reference point in the past, starting a time before then up to the reference point, I was habitually using cocaine up to and including

What's the problem with "using namespace std;"? The problem with putting using namespace in the header files of your classes is that it forces anyone who wants to use your classes (by including your header files) to also be 'using' (i.e.

How do I use the C#6 "Using static" feature? - Stack Overflow The static Keyword on a using statement will import only the one, specified type (and its nested types). Furthermore you must not give the type name anymore. So just add

How does `USING` keyword work in PostgreSQL? - Stack Overflow I am confused with the USING keyword which is used to join two tables in postgres. I first saw it in another SO post Compare two tables in postgres. I checked the

Back to Home: https://ns2.kelisto.es